• Portal do Governo Brasileiro

Plataforma Sucupira

Trabalho de Conclusão

Low dimensional monoidal category theory: A functorial method for constructing monoidal bicategories
PEDRO LINCK MACIEL
DISSERTAÇÃO
MACIEL, P. L.
27/04/2023
Neste trabalho começamos estudando alguns conceitos básicos da teoria de categorias clássica, como as categorias, funtores, transformações naturais, produtos e coprodutos, entre outros conceitos importantes, indo a fundo em suas definições e em suas propriedades gerais. Após este estudo nos é permitido estender o conhecimento para a teoria das categorias monoidais, com o objetivo de entender uma espécie de generalização do produto em categorias e de objetos algébricos dentro de tais categorias. Nesta parte, começamos estudando propriedades do neutro monoidal, a comutatividade de certos diagramas e propriedades de funtores que respeitam esta estrutura monoidal, com o objetivo de conseguirmos provar o teorema de coerência de MacLane, que nos provê a comutatividade de uma grande classe de diagramas, e o teorema de estritificação, que nos dá uma categoria monoidal equivalente à inicial que é mais algebricamente mais simples. Terminamos o estudo destas categorias vendo estruturas adicionais de trançamento, simetria e estruturas algébricas internas (monóides, módulos, bimódulos e ações em categorias monoidais). Por fim, estendemos o estudo de categorias monoidais para o caso de categorias de baixa dimensão para provar um teorema recentemente provado por Shulman (que diz que uma certa bicategoria associada à uma categoria dupla monoidal isofibrante é também monoidal através de uma associação funtorial) e o aplicamos em algumas situações.
Teoria de Categorias;Categorias Monoidais;Estruturas Algébricas em Categorias;Coerência;Bicategorias monoidais;Categorias duplas monoidais;Categorias duplas fibrantes;Bicategorias localmente cúbicas;Tricategorias;Categorias monoidais de baixa dimensão
In this work, we start studying some basic concepts of classical category theory, such as categories, functors, natural transformations, products and co-products, among other important concepts, understanding its definitions and their main properties. We proceed to the theory of monoidal categories, with the objective of understanding a generalization of the product in categories and of algebraic objects within such categories. We begin this part studying properties of the neutral, the commutativity of certain diagrams and the properties of functors that preserve the monoidal structure, with the aim of being able to prove MacLane’s coherence theorem, which gives us the commutativity of a large class of diagrams, and the strictification theorem, which gives us a monoidal category equivalent to the initial one that is algebraically simpler. We finish the study of these categories by looking at additional braiding structures, symmetry and internal algebraic structures (monoids, modules, bimodules and actions in monoidal categories). Finally, we extend the study of monoidal categories to the case of low-dimensional categories to prove a theorem recently proved by Shulman (which says that a certain bicategory associated with an isofibrant monoidal double category is also monoidal through a functorial association) and then we apply this result to some scenarios.
Category Theory;Monoidal Categories;Algebraic Structures in Categories;Coherence;Monoidal Bicategories;Monoidal double Categories;Fibrant Double Categories;Locally cubical bicategories;Tricategories;Low dimensional categories
1
136
INGLES
Central e Setorial
O trabalho possui divulgação autorizada
Pedro.pdf

Contexto

MATEMÁTICA
ÁLGEBRA
CLASSIFICAÇÃO DE ESTRUTURAS EM ÁLGEBRA COMUTATIVA E GEOMETRIA ALGÉBRICA

Banca Examinadora

EDUARDO SHIRLIPPE GOES LEANDRO
Sim
Nome Categoria
EDUARDO SHIRLIPPE GOES LEANDRO Docente - (PERMANENTE)
RUY JOSE GUERRA BARRETTO DE QUEIROZ Participante Externo
WILSON ROSA DE OLIVEIRA JUNIOR Participante Externo

Financiador

CNPJ/Código Governamental Internacional Descrição Número de Meses
00889834000108 FUND COORD DE APERFEICOAMENTO DE PESSOAL DE NIVEL SUP - Apoio à Pós-Graduação 24

Vínculo

Servidor Público
Instituição de Ensino e Pesquisa
Ensino e Pesquisa
Sim
Plataforma Sucupira
Capes UFRN RNP
  • Compatibilidade
  • . . .
  • Versão do sistema: 3.85.6
  • Copyright 2022 Capes. Todos os direitos reservados.

Nós usamos cookies para melhorar sua experiência de navegação no portal. Ao utilizar o gov.br, você concorda com a política de monitoramento de cookies. Para ter mais informações sobre como isso é feito, acesse Política de cookies.Se você concorda, clique em ACEITO.

Politica de Cookies

O que são cookies?

Cookies são arquivos salvos em seu computador, tablet ou telefone quando você visita um site.Usamos os cookies necessários para fazer o site funcionar da melhor forma possível e sempre aprimorar os nossos serviços. Alguns cookies são classificados como necessários e permitem a funcionalidade central, como segurança, gerenciamento de rede e acessibilidade. Estes cookies podem ser coletados e armazenados assim que você inicia sua navegação ou quando usa algum recurso que os requer.

Cookies Primários

Alguns cookies serão colocados em seu dispositivo diretamente pelo nosso site - são conhecidos como cookies primários. Eles são essenciais para você navegar no site e usar seus recursos.
Temporários
Nós utilizamos cookies de sessão. Eles são temporários e expiram quando você fecha o navegador ou quando a sessão termina.
Finalidade
Estabelecer controle de idioma e segurança ao tempo da sessão.

Cookies de Terceiros

Outros cookies são colocados no seu dispositivo não pelo site que você está visitando, mas por terceiros, como, por exemplo, os sistemas analíticos.
Temporários
Nós utilizamos cookies de sessão. Eles são temporários e expiram quando você fecha o navegador ou quando a sessão termina.
Finalidade
Coletam informações sobre como você usa o site, como as páginas que você visitou e os links em que clicou. Nenhuma dessas informações pode ser usada para identificá-lo. Seu único objetivo é possibilitar análises e melhorar as funções do site.

Você pode desabilitá-los alterando as configurações do seu navegador, mas saiba que isso pode afetar o funcionamento do site.

Chrome

Firefox

Microsoft Edge

Internet Explorer