• Portal do Governo Brasileiro

Plataforma Sucupira

Dados do Trabalhos de Conclusão

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA
CIÊNCIA DA COMPUTAÇÃO (31022014009P5)
IDENTIFICAÇÃO AUTOMÁTICA DE ATIVIDADE PREDATÓRIA SEXUAL EM CONVERSAS VIRTUAIS NO BRASIL
LEONARDO FERREIRA DOS SANTOS
DISSERTAÇÃO
29/04/2021

O uso da internet por crianças e adolescentes possibilita o acesso a um conjunto de oportunidades para o seu autodesenvolvimento. O acesso a informação, material educacional, entretenimento e socialização são algumas das oportunidades que podem ser usufruídas. O uso de redes sociais e um dos principais canais para socialização na internet. Por meio da criação de um perfil publico no momento de ingresso a rede social, crianças e adolescentes podem criar conexões com outros perfis e estabelecer comunicação por meio de conversas virtuais. Predadores sexuais, por sua vez, fazem uso de redes sociais com o propósito de ludibriar essas crianças e adolescentes, estabelecendo uma relação enganosa para posterior execução de diversas atividades criminosas, como a obtenção de conteúdo pornográfico, a extorsão e a pratica do abuso sexual. Nesse cenário, diversos estudos vem se concentrando na identificação de predadores sexuais na internet. Embora seja um domínio de pesquisa amplamente explorado, não foram encontrados trabalhos que considerem o estudo de conversas virtuais realizadas na língua portuguesa do Brasil. Diante do problema exposto, a presente pesquisa tem como o principal objetivo propor um método que apresente resultados significativos para a identificação de atividade predatória em conversas textuais e virtuais em Português do Brasil. Para atingir esse objetivo, foi considerado como base de estudos um conjunto de 82 conversas predatórias anonimizadas e oriundas de provas criminais presentes em processos judiciais. Após a analise das conversas predatórias, um total de dezenove características textuais e comportamentais foram identificadas e consideradas para a criação de um método para detecção de atividade predatória em conversas textuais denominado MDAP. Para a validação do método, foi criado um conjunto de dados com características similares as da competição PAN-2012, utilizando como base as 82 conversas predatórias. Os resultados obtidos, quando comparados aos métodos candidatos ao estado da arte para o domínio da pesquisa, comprovam a eficiência do método MDAP para a identificação de atividade predatória em conversas textuais, se apresentando como uma alternativa para promoção de um ambiente virtual mais seguro para crianças e adolescentes.

pedofilia;conversas virtuais;aprendizado de maquina
The use of the internet by children and adolescents provides access to a set of opportunities for their self-development. Access to information, educational material, entertainment, and socialization are some of the options available. The use of social networks is one of the main channels for socializing on the internet. By creating a public profile when joining the social network, children and adolescents can develop connections with other people and establish communication through virtual conversations. Sexual predators, in turn, make use of social networks to deceive these children and adolescents, establish a deceptive relationship for subsequent execution of various criminal activities, such as obtaining pornographic content, extortion, and the practice of sexual abuse. In this scenario, several studies have focused on the identification of sexual predators on the internet. Although it is a widely explored research domain, no studies considered the task of virtual conversations conducted in Brazil’s Portuguese language. Given the problem introduced, the present research has its primary objective to propose a method that offers significant results for identifying predatory activity on textual and virtual conversations in Brazilian Portuguese. A set of 82 anonymous predatory chats and criminal evidence present in judicial proceedings was considered the basis for the domain studies to understand sexual predatory activity in Brazil better. After the analysis of predatory conversations, a total of nineteen textual and behavioral characteristics identified served as the basis for creating the MDAP method. A data set with similar properties compared to the data set of the PAN-2012 competition validated the proposed method, using 82 predatory conversations as a basis. Compared to the state-of-the-art candidate methods for the research domain, the results obtained prove the efficiency of the MDAP method for identifying predatory activity in textual conversations, presenting itself as an alternative to promote a safer virtual environment for children and adolescents
pedophilia;virtual conversations;machine learning
01
134
PORTUGUES
CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA
O trabalho possui divulgação autorizada
Leonardo Ferreira dos Santos.pdf

Contexto

Ciência da Computação
ANÁLISE DE DADOS E APLICAÇÕES
Mineração de Texto, Computação Afetiva e Análise Comportamental

Banca Examinadora

GUSTAVO PAIVA GUEDES E SILVA
DOCENTE - PERMANENTE
Sim
Nome Categoria
RONALDO RIBEIRO GOLDSCHMIDT Participante Externo
EDUARDO SOARES OGASAWARA Docente - PERMANENTE
GUSTAVO PAIVA GUEDES E SILVA Docente - PERMANENTE
EDUARDO BEZERRA DA SILVA Docente - PERMANENTE

Vínculo

CLT
Empresa Privada
Empresas
Sim
Plataforma Sucupira
Capes UFRN RNP
  • Compatibilidade
  • . . .
  • Versão do sistema: 3.85.14
  • Copyright 2022 Capes. Todos os direitos reservados.

Nós usamos cookies para melhorar sua experiência de navegação no portal. Ao utilizar o gov.br, você concorda com a política de monitoramento de cookies. Para ter mais informações sobre como isso é feito, acesse Política de cookies.Se você concorda, clique em ACEITO.

Politica de Cookies

O que são cookies?

Cookies são arquivos salvos em seu computador, tablet ou telefone quando você visita um site.Usamos os cookies necessários para fazer o site funcionar da melhor forma possível e sempre aprimorar os nossos serviços. Alguns cookies são classificados como necessários e permitem a funcionalidade central, como segurança, gerenciamento de rede e acessibilidade. Estes cookies podem ser coletados e armazenados assim que você inicia sua navegação ou quando usa algum recurso que os requer.

Cookies Primários

Alguns cookies serão colocados em seu dispositivo diretamente pelo nosso site - são conhecidos como cookies primários. Eles são essenciais para você navegar no site e usar seus recursos.
Temporários
Nós utilizamos cookies de sessão. Eles são temporários e expiram quando você fecha o navegador ou quando a sessão termina.
Finalidade
Estabelecer controle de idioma e segurança ao tempo da sessão.

Cookies de Terceiros

Outros cookies são colocados no seu dispositivo não pelo site que você está visitando, mas por terceiros, como, por exemplo, os sistemas analíticos.
Temporários
Nós utilizamos cookies de sessão. Eles são temporários e expiram quando você fecha o navegador ou quando a sessão termina.
Finalidade
Coletam informações sobre como você usa o site, como as páginas que você visitou e os links em que clicou. Nenhuma dessas informações pode ser usada para identificá-lo. Seu único objetivo é possibilitar análises e melhorar as funções do site.

Você pode desabilitá-los alterando as configurações do seu navegador, mas saiba que isso pode afetar o funcionamento do site.

Chrome

Firefox

Microsoft Edge

Internet Explorer