• Portal do Governo Brasileiro

Plataforma Sucupira

Dados do Trabalhos de Conclusão

UNIVERSIDADE FEDERAL DE PERNAMBUCO
ENGENHARIA DE PRODUÇÃO (25001019021P8)
DEVELOPMENT OF BAYESIAN MULTILEVEL MODELS FOR RELIABILITY ASSESSMENT OF UNDER DEVELOPMENT TECHNOLOGIES IN THE OIL AND GAS INDUSTRY: CASE STUDIES FOR AN EXPANSIBLE PACKER AND A SLIDING SLEEVE VALVE FOR OPEN-HOLE WELLS
RAFAEL VALENCA AZEVEDO
TESE
09/08/2024

The development of new equipment technologies constitutes one of the greatest challenges in the oil and gas industry, particularly for the well engineering area. It is necessary to ensure that new technologies have satisfactory and failure-free performance for high mission times, much longer than the typical and viable durations of qualification and reliability demonstration tests. Furthermore, the development process is complex and iterative, involving different types of data from tests, numerical simulations and multiphysics analyses, from its inception to full-scale operation. In this context, it is essential to have a way to collect and aggregate these different types of data as they become available to monitor and control the technological development process, being able to provide equipment developed with the desired reliability requirements. However, to achieve this objective two key challenges need to be overcome: (i) the heterogeneity of data obtained during development, since tests and analyzes are carried out on different models, components, and stressors; (ii) the low quality of information collected in tests for such long time horizons (such as mission times for completion equipment, which can reach 27 years in Brazilian fields) due to infrastructure, technology and cost limitations. To achieve this, the methodology presented in this thesis proposes the construction of a multilevel reliability model (MRM) and a Bayesian framework that allows the use of heterogeneous data to feed the reliability model of the new technology and aggregate test data with information from other sources. , such as the opinions of experts and databases of similar systems, which are treated as a baseline for the a priori analysis of the reliability of the new technology, being updated by the test results. Two methods for obtaining a priori reliability prediction with simple and intuitive elicitation are proposed and applied to an openhole expandable packer and a sliding sleeve valve, demonstrating the robustness and applicability of the solutions for continuously and non-continuously operated systems. Furthermore, the model allows the aggregation of new information as it becomes available, allowing a residual uncertainty analysis to be carried out at each stage of development and thus providing a powerful reliability monitoring tool throughout the development process of new equipment.

completion technology development;multilevel reliability model (MRM);Bayesian reliability;informative prior distribution;residual uncertainty analysis
The development of new equipment technologies constitutes one of the greatest challenges in the oil and gas industry, particularly for the well engineering area. It is necessary to ensure that new technologies have satisfactory and failure-free performance for high mission times, much longer than the typical and viable durations of qualification and reliability demonstration tests. Furthermore, the development process is complex and iterative, involving different types of data from tests, numerical simulations and multiphysics analyses, from its inception to full-scale operation. In this context, it is essential to have a way to collect and aggregate these different types of data as they become available to monitor and control the technological development process, being able to provide equipment developed with the desired reliability requirements. However, to achieve this objective two key challenges need to be overcome: (i) the heterogeneity of data obtained during development, since tests and analyzes are carried out on different models, components, and stressors; (ii) the low quality of information collected in tests for such long time horizons (such as mission times for completion equipment, which can reach 27 years in Brazilian fields) due to infrastructure, technology and cost limitations. To achieve this, the methodology presented in this thesis proposes the construction of a multilevel reliability model (MRM) and a Bayesian framework that allows the use of heterogeneous data to feed the reliability model of the new technology and aggregate test data with information from other sources. , such as the opinions of experts and databases of similar systems, which are treated as a baseline for the a priori analysis of the reliability of the new technology, being updated by the test results. Two methods for obtaining a priori reliability prediction with simple and intuitive elicitation are proposed and applied to an openhole expandable packer and a sliding sleeve valve, demonstrating the robustness and applicability of the solutions for continuously and non-continuously operated systems. Furthermore, the model allows the aggregation of new information as it becomes available, allowing a residual uncertainty analysis to be carried out at each stage of development and thus providing a powerful reliability monitoring tool throughout the development process of new equipment.
completion technology development;multilevel reliability model (MRM);Bayesian reliability;informative prior distribution;residual uncertainty analysis
1
115
INGLES
UNIVERSIDADE FEDERAL DE PERNAMBUCO
O trabalho não possui divulgação autorizada

Contexto

PESQUISA OPERACIONAL
CONFIABILIDADE, MANUTENÇÃO E RISCOS EM SISTEMAS DE PRODUÇÃO
ANÁLISE PROBABILÍSTICA DE RISCO E DA CONFIABILIDADE EM SISTEMAS COMPLEXOS

Banca Examinadora

MARCIO JOSE DAS CHAGAS MOURA
DOCENTE - PERMANENTE
Sim
Nome Categoria
MANOEL FELICIANO DA SILVA JUNIOR Participante Externo
DANILO COLOMBO Participante Externo
LEANDRO CHAVES REGO Docente - PERMANENTE
MARCIO JOSE DAS CHAGAS MOURA Docente - PERMANENTE
ISIS DIDIER LINS Docente - PERMANENTE

Financiadores

Financiador - Programa Fomento Número de Meses
FUND COORD DE APERFEICOAMENTO DE PESSOAL DE NIVEL SUP - Programa de Excelência Acadêmica 24

Vínculo

-
-
-
Não
Plataforma Sucupira
Capes UFRN RNP
  • Compatibilidade
  • . . .
  • Versão do sistema: 3.85.1
  • Copyright 2022 Capes. Todos os direitos reservados.

Nós usamos cookies para melhorar sua experiência de navegação no portal. Ao utilizar o gov.br, você concorda com a política de monitoramento de cookies. Para ter mais informações sobre como isso é feito, acesse Política de cookies.Se você concorda, clique em ACEITO.

Politica de Cookies

O que são cookies?

Cookies são arquivos salvos em seu computador, tablet ou telefone quando você visita um site.Usamos os cookies necessários para fazer o site funcionar da melhor forma possível e sempre aprimorar os nossos serviços. Alguns cookies são classificados como necessários e permitem a funcionalidade central, como segurança, gerenciamento de rede e acessibilidade. Estes cookies podem ser coletados e armazenados assim que você inicia sua navegação ou quando usa algum recurso que os requer.

Cookies Primários

Alguns cookies serão colocados em seu dispositivo diretamente pelo nosso site - são conhecidos como cookies primários. Eles são essenciais para você navegar no site e usar seus recursos.
Temporários
Nós utilizamos cookies de sessão. Eles são temporários e expiram quando você fecha o navegador ou quando a sessão termina.
Finalidade
Estabelecer controle de idioma e segurança ao tempo da sessão.

Cookies de Terceiros

Outros cookies são colocados no seu dispositivo não pelo site que você está visitando, mas por terceiros, como, por exemplo, os sistemas analíticos.
Temporários
Nós utilizamos cookies de sessão. Eles são temporários e expiram quando você fecha o navegador ou quando a sessão termina.
Finalidade
Coletam informações sobre como você usa o site, como as páginas que você visitou e os links em que clicou. Nenhuma dessas informações pode ser usada para identificá-lo. Seu único objetivo é possibilitar análises e melhorar as funções do site.

Você pode desabilitá-los alterando as configurações do seu navegador, mas saiba que isso pode afetar o funcionamento do site.

Chrome

Firefox

Microsoft Edge

Internet Explorer